/v

AARHUS UNIVERSITET

Microservices and DevOps

DevOps and Container Technology
Design for Deployment

Henrik Baerbak Christensen

eV Motivation

AARHUS UNIVERSITET

« Continuous Delivery of Services
— Individual versions of services, combined into full system

= wosor | || s | [semcetess |
s S L \\
7 o - .
— [i b a2
(":L‘:lefe' I Build) Unit tests } Service tests) T
: N ~ - “~ o [End-to-end
2 " - T tets
Helpdesk Build) Unit tests] Servlcetests] A2 0l
gy \. . L l,
: ¢
. — [lty (- 4 4 ’fl
54 55 oy ’
Vv # Vv goints bank i Build } LUmt 1ests) LSennce tests]

e I -

Easy? Edit composefile, and ‘docker stack deploy’. Right?

CS@AU Henrik Beerbak Christensen 2

eV Motivation

AARHUS UNIVERSITET

« Co-existence of versions of services
— During deployment (horizontally scaled)
— Assumptions on version of interfaces between services

I . \ [\ 1
weoswp |t || v | [s |
o - AN J L ' ¥
i ~ 2 O =3 = N & “\
gy Buifd Unittests | | Servicetests b ~. ‘s
- “
N “ N 4\ “~a | End-to-end
. ~ \ ~ 2 ,: tests |
Helpdesk Build | | Unittests | | Servicetests | -~ ¢
2 25N Y o " e P
: ¢
——_ | | - ™ (N 4 = 3 v 4
v54 # V55 Loyeny Buld | | Unittests Servicetests | 7
points bank]
\ 3 A r o y

CS@AU Henrik Baerbak Christensen 3

eV Rollout takes time

AARHUS UNIVERSITET

* Full Deployment phases
— Preparation
— Rollout N applications
— Cleanup

« Each Application Rollout, again contains phases
— Preparation
— Drain Stop new request, await pending processed
— Update Deploy new application
— Startup Loading, Warm up caches, state resynch

« Thatis, multiple versions co-exist in production ®

/v Simple Example

AARHUS UNIVERSITET

 EcoSense MongoDB replica set disk size expansion
— (ended at 3 x 6 TeraBytes)

— For three instances do:

* Drain: Shutdown db server
— If Primary, await new primary promoted

* LVM magic to extend size (manual process, takes 1-3 minutes)
« Update: Start db server

« Startup: Await replica status shows server is ‘uptodate’
— (Bass ‘State resynch’ finished)

eV Issues

AARHUS UNIVERSITET

« Versions differ on several aspects

— (Rest/Web) APIs
* (Nygard §14 / We will return in second course ‘versioning’)

— Database schemas

— Web assets

CS@AU Henrik Beerbak Christensen 6

/v Database Migration: SQL

AARHUS UNIVERSITET

« Shim: Bit of code that helps join the old and new version

of application.

Table A Table A

ID Attr 1l | Attr 2 | Attr 3 | Attr 4 iD

Attr 1

Attr 2

— after insert ——p

Table B

ID

Attr 3

Attr 4

« Triggers on UPDATE, INSERT, DELETE

that update in both directions

CS@AU Henrik Baerbak Christensen

Y Migration: NoSQL

AARHUS UNIVERSITET
« Schema-less? Hah! Applications expect schemas!

— Corollary: Always include version identity in documents!
— Keep old data around to

Reader

test the translations m/
 v2 ->Vv3; v3 —> Vv4; etc.
- e Rwd Re\ﬁier Re\ﬁ'jer R\e/gger Re\;!::!er
 Liability: ,
— Deep pipeline (slow) \ |
- CumberSOme COde TrarYszlator Trar\\lsalator_)'TratYs‘Tatm >Trav¥s’{at03 >nggecr‘ﬁ
— Db contents hlghly mixed Translation Pipeline

CS@AU Henrik Beerbak Christensen 8

/v Migration

AARHUS UNIVERSITET
« Approach two

 Liability

— Big data means hours spent on migration => Planned downtime

* Why instance update before migration routine?

— Consider old version instance reads from new format db
« Cascading failure...

CS@AU Henrik Beerbak Christensen 9

/v Migration

AARHUS UNIVERSITET

« Approach three (Nygard’s favorite)

Event
Received

Y

Load Document

Document Update
Current? Document

CS@AU Henrik Beerbak Christensen 10

/v

AARHUS UNIVERSITET

* Benefits
— Migration time is amortized (no downtime)
— Batch can run concurrently in production
— Only one version in DB (eventually ©)

— Clean code (no translation pipeline; no
conditional code; eventually ©)

 Liabilities
— Complex deployment setup

« Two application updates for all apps that
read that kind of document

Migration

Event
Received

4

Load Document

Documen t 5 Update
Current? Document

yes

¢ Y

Save in New
Format

Process Event <&

A4

Send
Response

— v_n: with trickle code; v_n+1: trickle code removed

CS@AU Henrik Baerbak Christensen

11

/v Example

AARHUS UNIVERSITET
 From my own, small-scale, backyard

* Crunch3: Predecessor for ‘your Crunch’

— Date’s were generated by GSON library

 Andtheys...., as
— Plain text in two different incompatible formats
— UTCor EST or ?

« Migrate to ISO8601

« Always use ISO8601 strings !!!

CS@AU Henrik Baerbak Christensen 12

bl Fear of ‘Oh-No’ seconds...

AARHUS UNIVERSITET

emacs@m31l
Edit Options Buffers Tools Java Help
Tempting to use GSON for deseriali
String groupName = asDoc.getString(GROUP KEY);

String exerciseName = asDoc.getString(EXERCISE NAME KEY);
String status = asDoc.getString(STATUS KEY);

Date submissionTime = null;

Date lastRevisionTime = null;

Date hasPassedlLatchTime = null;

String paraml = null; String param2 = null;

je)

DATral
Pgra

if (1 asboc.containsKey(HAS PASSED LATCH TIME KEY)) { Even buggy comment ®

AN 5SON parser chokes on the wrong format!!!
String s asDoc.getString(SUBMISSION TIME KEY);
String Lrt = asDoc.getString(LAST REVISION TIME KEY);
submissionTime = RobustGSONDateParser.parse(st);
lastRevisionTime = RobustGSONDateParser.parse(lrt);
else {

Tc

submissionTime = asDoc.getDate(SUBMISSION TIME KEY);
lastRevisionTime = asDoc.getDate(LAST REVISION TIME KEY);[
hasPassedLatchTime = asDoc.getDate(HAS PASSED LATCH TIME KEY);
paraml = asDoc.getString(PARAML KEY);

param2 = asDoc.getString(PARAM2 KEY);

Trickle, without the batch ©

Henrik Baerbak Christensen

pav Web assets

AARHUS UNIVERSITET

* The issue:
— Web Ul’s contains static assets (stylesheets, java script, images,

)

— Web browsers cache these assets

« Thank god, so server load is minimized

— Usually there is a hard coupling between Ul elements and server
side

* Tips and trick — see Nygard ©

CS@AU Henrik Beerbak Christensen 14

/v

AARHUS UNIVERSITET

Rollout Techniques

Birds, colors, and more...

/v Blue/Green Deployments

AARHUS UNIVERSITET
« Algorithm
LOAD
— Deploy v N+1 BALANCER

— Smoke test
_ Swich load /
— Monitor!

« Benefit
— Rollback is easy

+ Liability
— 2X HW cosit!
— Common DB ?7?

CS@AU Henrik Baerbak Christensen

/v Release Vrs Deploy

AARHUS UNIVERSITET

* Blue/Green embody the distinction
LOAD
between release and deploy BALANCER

* Deploy vN+1 but Release is VN V4

CS@AU Henrik Baerbak Christensen

/v Canary Deployment

AARHUS UNIVERSITET

« Algorithm

— Direct d% traffic to version
n+1

— Monitor

» If OK, direct (d+20)%
traffic to it

* Benefits
— Scientific experimentation!
— Lower HW costs
— Easy rollback
+ Liabilities
— Complex setup
CS@AU Henrik Baerbak Christensen 18

/v

AARHUS UNIVERSITET

« Algorithm
— One-by-one

 Benefits
— Constant HW

 Liability
— Complexity

CS@AU

Rolling Deployment

Henrik Baerbak Christensen

19

VeV Humble:

AARHUS UNIVERSITET

» Commit stage
— Asserts technical level

* Build + Unit tests
* Accept test stage N

Commit stage

. Compile cceptance —S rodiscticis
— System works at functional Asiive esttage 4

Build installers

and non-functional level Capachy
 Meets demand of users

 Manual test stages
— UAT

 Release stage
— Deliver system to users

Faster feedback

A manual go/no-go ?

CS@AU Henrik Baerbak Christensen 20

Y Monitoring

AARHUS UNIVERSITET
* Rollout depends deeply on monitoring...

 Qverview the machines and overview the services

« We will return to that in course two...

eV Nygard

AARHUS UNIVERSITET

* Nygard provides more detail in the rollout phase than
Newman ©

— "Canary release, yes, but hey — what if the canaries migrates the
shared database schema ??77?”

— "What if requests gets load-balanced to (new, old, new, old, new)
version instances?

* The rollout phases
— Drain, update, startup
— Important: monitor after each phase

VeV Sessions

AARHUS UNIVERSITET

 If you do blue/green deployments

— What happens to open connections when the load balancer
switches from the blue to the green cluster?

 If you do canary or rolling deployments

— What happens if you hit an old version instance that tries to
access new database schema documents?

eV Session Stickiness

AARHUS UNIVERSITET

* You must avoid hitting new/old instances as they co-
exists

 Alternatives

— Session database: Session data is stored in session database,
shared by all servers

— Client sessions (browser cookies): Session data is stored Iin
client, sent with each request

CS@AU Henrik Beerbak Christensen 24

/v Co-existing Versions

AARHUS UNIVERSITET

 If you have (old/new) version applications co-existing
— Which is a consequence of no-down-time continuous delivery ©

« Then you have to ensure session stickiness

— To avoid (new) version request put an Order object (new format)
Into the DB, and next a (old) version request read it expecting the
old format

 But
— What is the big issue with session stickiness?

Y Cleanup

AARHUS UNIVERSITET
e Monitor hard ©

 If everything looks OK, then cleanup

— Remove shims, drop tables, initiate then-batch of trickle-then-
batch, remove trickle code (new version, then new ‘delivery’)

Y Summary

AARHUS UNIVERSITET
* Nygard digs that one step deeper into real issues !

« Lots of code near techniques must be employed in order
to make CD work in practice...

— Characterization of the process

» Preparation, Rollout N, Cleanup
— Preparation, Drain, Update, Startup

— Tactics for state migration
« Translation pipeline, Migration process, Trickle-then-batch
— Issues in Deployment Rollout
» (Temporary?) Session stickiness a bit vague there...

