
Microservices and DevOps

DevOps and Container Technology
Design for Deployment

Henrik Bærbak Christensen



Motivation

• Continuous Delivery of Services

– Individual versions of services, combined into full system

CS@AU Henrik Bærbak Christensen 2

v231

v198

v534

v54 v55

Easy? Edit composefile, and ‘docker stack deploy’. Right?



Motivation

• Co-existence of versions of services

– During deployment (horizontally scaled)

– Assumptions on version of interfaces between services

CS@AU Henrik Bærbak Christensen 3

v231

v198

v534

v54 v55



Rollout takes time

• Full Deployment phases

– Preparation

– Rollout N applications

– Cleanup

• Each Application Rollout, again contains phases

– Preparation

– Drain Stop new request, await pending processed

– Update Deploy new application

– Startup Loading, Warm up caches, state resynch

• That is, multiple versions co-exist in production 

CS@AU Henrik Bærbak Christensen 4



Simple Example

• EcoSense MongoDB replica set disk size expansion

– (ended at 3 x 6 TeraBytes)

– For three instances do:

• Drain: Shutdown db server

– If Primary, await new primary promoted

• LVM magic to extend size (manual process, takes 1-3 minutes)

• Update: Start db server

• Startup: Await replica status shows server is ‘uptodate’

– (Bass ‘State resynch’ finished)

CS@AU Henrik Bærbak Christensen 5



Issues

• Versions differ on several aspects

– (Rest/Web) APIs

• (Nygard §14 / We will return in second course ‘versioning’)

• Robustness Principle: Be conservative in what you do, be liberal in 

what you accept from others. [Jon Postel]

– Database schemas

– Web assets

CS@AU Henrik Bærbak Christensen 6



Database Migration: SQL

• Shim: Bit of code that helps join the old and new version 

of application.

• Triggers on UPDATE, INSERT, DELETE

that update in both directions

CS@AU Henrik Bærbak Christensen 7

Version v54 Version v55



Migration: NoSQL

• Schema-less? Hah! Applications expect schemas!

• Translation pipeline: Code the reader so it can read all 

versions ever made.

– Corollary: Always include version identity in documents!

– Keep old data around to

test the translations

• v2 -> v3; v3 –> v4; etc.

• Liability:

– Deep pipeline (slow)

– Cumbersome code

– Db contents highly mixed

CS@AU Henrik Bærbak Christensen 8



Migration

• Approach two

• Migration routine: Run a special schema lifting process 

during deployment, after all instances have been updated

• Liability

– Big data means hours spent on migration => Planned downtime

• Why instance update before migration routine?

– Consider old version instance reads from new format db

• Cascading failure…

CS@AU Henrik Bærbak Christensen 9



Migration

• Approach three (Nygard’s favorite)

• Trickle, then batch: Initiate migration as 

they are touched (conditional code in the 

application code). After some time (at 

least all instances are updated), perform a 

batch migration routine on all documents 

not converted. Finally, conditional code 

can be removed (final update).

CS@AU Henrik Bærbak Christensen 10



Migration

• Benefits

– Migration time is amortized (no downtime)

– Batch can run concurrently in production

– Only one version in DB (eventually ☺)

– Clean code (no translation pipeline; no

conditional code; eventually ☺)

• Liabilities

– Complex deployment setup

• Two application updates for all apps that

read that kind of document

– v_n: with trickle code; v_n+1: trickle code removed

CS@AU Henrik Bærbak Christensen 11



Example

• From my own, small-scale, backyard

• Crunch3: Predecessor for ‘your Crunch’

– Date’s were generated by GSON library

• And they s…., as

– Plain text in two different incompatible formats

– UTC or EST or ?

• Migrate to ISO8601

• Always use ISO8601 strings !!!

CS@AU Henrik Bærbak Christensen 12



Fear of ‘Oh-No’ seconds…

CS@AU Henrik Bærbak Christensen 13

Even buggy comment

Trickle, without the batch ☺



Web assets

• The issue:

– Web UI’s contains static assets (stylesheets, java script, images, 

…)

– Web browsers cache these assets

• Thank god, so server load is minimized

– Usually there is a hard coupling between UI elements and server 

side

• So, when we update the server, we must force the 

browser to ‘bust the cache’ and fetch all assets afresh!

• Tips and trick – see Nygard ☺

CS@AU Henrik Bærbak Christensen 14



Rollout Techniques

Birds, colors, and more…



Blue/Green Deployments

• Algorithm

– Deploy v N+1

– Smoke test

– Swich load

– Monitor!

• Benefit

– Rollback is easy

• Liability

– 2x HW cost!

– Common DB ???

CS@AU Henrik Bærbak Christensen 16



Release Vrs Deploy

• Blue/Green embody the distinction

between release and deploy

• Deploy vN+1 but Release is vN

CS@AU Henrik Bærbak Christensen 17



Canary Deployment

• Algorithm

– Direct d% traffic to version

n+1

– Monitor

• If OK, direct (d+20)%

traffic to it

• Benefits

– Scientific experimentation!

– Lower HW costs

– Easy rollback

• Liabilities

– Complex setup
CS@AU Henrik Bærbak Christensen 18



Rolling Deployment

• Algorithm

– One-by-one

• Benefits

– Constant HW

• Liability

– Complexity

CS@AU Henrik Bærbak Christensen 19



Humble:

• Commit stage

– Asserts technical level

• Build + Unit tests

• Accept test stage

– System works at functional

and non-functional level

• Meets demand of users

• Manual test stages

– UAT

• Release stage

– Deliver system to users

CS@AU Henrik Bærbak Christensen 20

A manual go/no-go ?



Monitoring

• Rollout depends deeply on monitoring…

• Overview the machines and overview the services

• We will return to that in course two…

CS@AU Henrik Bærbak Christensen 21



Nygard

• Nygard provides more detail in the rollout phase than 

Newman ☺

– ”Canary release, yes, but hey – what if the canaries migrates the 

shared database schema ???”

– ”What if requests gets load-balanced to (new, old, new, old, new) 

version instances?

• The rollout phases

– Drain, update, startup

– Important: monitor after each phase

CS@AU Henrik Bærbak Christensen 22



Sessions

• If you do blue/green deployments

– What happens to open connections when the load balancer 

switches from the blue to the green cluster?

• If you do canary or rolling deployments

– What happens if you hit an old version instance that tries to 

access new database schema documents?

CS@AU Henrik Bærbak Christensen 23



Session Stickiness

• You must avoid hitting new/old instances as they co-

exists

– Sticky sessions: All requests from a given session is routed to the 

same server

• Or perhaps ‘same version of server’

• Alternatives

– Session database: Session data is stored in session database, 

shared by all servers

– Client sessions (browser cookies): Session data is stored in 

client, sent with each request

CS@AU Henrik Bærbak Christensen 24



Co-existing Versions

• If you have (old/new) version applications co-existing 

– Which is a consequence of no-down-time continuous delivery ☺

• Then you have to ensure session stickiness

– To avoid (new) version request put an Order object (new format) 

into the DB, and next a (old) version request read it expecting the 

old format

• But

– What is the big issue with session stickiness?

CS@AU Henrik Bærbak Christensen 25



Cleanup

• Monitor hard ☺

• If everything looks OK, then cleanup

– Remove shims, drop tables, initiate then-batch of trickle-then-

batch, remove trickle code (new version, then new ‘delivery’)

CS@AU Henrik Bærbak Christensen 26



Summary

• Nygard digs that one step deeper into real issues !

• Lots of code near techniques must be employed in order 

to make CD work in practice…

– Characterization of the process

• Preparation, Rollout N, Cleanup

– Preparation, Drain, Update, Startup

– Tactics for state migration

• Translation pipeline, Migration process, Trickle-then-batch

– Issues in Deployment Rollout

• (Temporary?) Session stickiness a bit vague there…

CS@AU Henrik Bærbak Christensen 27


